

10 to 300 Watts DC-DC Converters Single, Dual, Triple Output Chassis Mount

Features & Benefits

- Inputs: 28, 155, 165 and 270V_{DC}
- One, two or three outputs
- Outputs from 2 to 48V_{DC}
- MIL-STD-704D/E/F transient compliance for 28 and 270Vpc
- MIL-STD-1399A compliance for 155V_{DC}
- Up to 13.5 W/in³
- · High efficiency
- Remote sense
- ZCS power architecture
- · Low noise FM control
- 1 Up: 2.58" x 2.5" x 0.62" (Half Size) 4.9" x 2.5" x 0.62" (Full Size)
- 3 Up: 2.58" x 7.3" x 0.62" (Half Size) 4.9" x 7.3" x 0.62" (Full Size)

Product Highlights

Vicor's MI-MegaMod family of single, dual, and triple output DC-DC converters provide power system designers with cost-effective, high-performance, off-the-shelf solutions to applications that might otherwise require a custom supply.

Incorporating standard MI-200 or MI-J00 family converters in rugged, chassis mount packages, MegaMods can be ordered with single, dual, or triple outputs, having a combined output power of up to 300W. Totally isolated outputs eliminate efficiency penalties and output interaction problems.

Configuration Chart

<u>Full-Size Modules – M</u>	legaMod	<u> Junior-Size Modules – MegaMod Jr</u>				
Configuration	Output Power	# of Modules	Configuration	Output Power	# of Modules	
Single Output MI-L · · · · · · · ·	50 – 100 W	1	Single Output MI-LJ · · - · · · ·	10 – 50 W	1	
MI-N • • • • • • • • • • • • • • • • • • •	150 – 200 W 300 W	3				
Dual Output MI-P	100 – 200 W	2	Dual Output MI-PJ	20 – 100 W	2	
Triple Output MI-R · · · · · · · · · · · · · · · · · · ·	200 – 300 W 150 – 300 W	3	Triple Output MI-RJ • • • • • • • • • • • • • • • • • • •	30 – 150 W	3	

Input Voltage

Nominal	Range	Transient ^[a]
2 = 28V	18 – 50V[b]	60
5 = 155V	100 – 210V	230
6 = 270V	125 – 400V	475
7 = 165V	100 – 310V	n/a

[[]a] Transient voltage for 1 second. [b] 1

Output Voltage

Z =2V	T =6.5V ^[c]	N =18.5V
Y =3.3V	R =7.5V ^[c]	3 =24V
0 =5V	M =10V	L=28V
X = 5.2V	1 =12V	J =36V
W = 5.5V	P =13.8V	K =40V
V =5.8V	2 =15V	4 =48V

MegaMod	MegaMod Jr.					
I = -40 to +85 M = -55 to +85	-40 to +100 -55 to +100					
Refers to Baseplate Temperature						

Product Grade Temperature (°C)

Output Power/Current

Mega	aMod	MegaMod Jr.		
V _{оит} ≥ 5V	V оит < 5V	V _{ouт} ≥ 5 V	V _{OUT} < 5V	
Y = 50W X = 75W W = 100W V = -	Y = 10A X = 15A W = 20A V = 30A	A = 10W Z = 25W Y = 50W	A = - Z = 5A Y = 10A	

Output Power/Current

V _{ouт} ≥ 5V	V _{OUT} < 5V
V = 150W	V = 30A
U = 200W	U = -
S = -	S = 60A

V _{оит} ≥ 5 V	V out < 5V
S = 300W P = —	S = — P = 90A

[[]b] 16 V operation at 75% load.

^[c] 75W max. module power for 28V input voltage

MI-MegaMod Specifications

(typical at TBP = 25°C, nominal line, 75% load, unless otherwise specified)

INPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Inrush charge		120x10 ⁻⁶	200x10 ⁻⁶	Coulombs	Nom. line, per module
Input reflected ripple current – pp		10		%I _{IN}	Nom. line, full load
		30+20Log $\left(\frac{V_{IN}}{V_{OUT}}\right)$	_)	dB	120Hz, nom. line
Input ripple rejection		20+20Log $\left(\frac{V_{IN}}{V_{OUT}}\right)$	_)	dB	2400Hz, nom. line
No load power dissipation		1.35	2	Watts	Per module

OUTPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Setpoint accuracy		0.5	1	%V _{NOM}	
Load / line regulation		0.05	0.2	%V _{NOM}	LL to HL, 10% to FL
Load / line regulation		0.2	0.5	%V _{NOM}	LL to HL, NL to 10%
Output temperature drift		0.01	0.02	% / °C	Over rated temp.
Long term drift		0.02		%/1K hours	
Output ripple - pp					
≤ 10V		80	150	mV	20MHz bandwidth
12 – 48V		0.75	1.5	%V _{NOM}	2 MHz bandwidth
Output voltage trimming [a]	50		110	%V _{NOM}	
Total remote sense compensation	0.5			Volts	0.25V max. neg. leg
OVP setpoint	115	125	135	V _{NOM}	Recycle power
Current limit	105		125	Ілом	Automatic restart
Short circuit current			130	%Ілом	

[[]a] 10V to 15V outputs, standard trim range $\pm 10\%$. Consult factory for wider trim range.

CONTROL PIN SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Gate out impedance		50		Ω	
Gate in impedance		10 ³		Ω	
Gate in open circuit voltage		6.0		Volts	Use open collector
Gate in low threshold	0.65			Volts	
Gate in low current			6.0	mA	

MI-MegaMod Specifications (Cont.)

DIELECTRIC WITHSTAND CHARACTERISTICS

Parameter	Min	Тур	Max	Unit	Notes
Isolation (input to output)	3,000			V_{RMS}	
Isolation (output to baseplate)	500			V _{RMS}	
Isolation (input to baseplate)	1,500			V _{RMS}	

THERMAL CHARACTERISTICS

Parameter	Min	Тур	Max	Units	Notes
Efficiency		80 – 90%			
Baseplate to chassis		0.1		°C/Watt	
Thermal Shutdown (drivers only)	90	95	105	°C	

MECHANICAL SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Weight					
1 Up		9.0 (255)		Ounces (Grams)	
2 Up		1.2 (545)		Lbs. (Grams)	
3 Up		1.7 (772)		Lbs. (Grams)	

MI-MegaMod Specifications

(typical at TBP = 25°C, nominal line, 75% load, unless otherwise specified)

INPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Inrush charge		60x10 ⁻⁶	100x10 ⁻⁶	Coulombs	Nom. line, per module
Input reflected ripple current — pp		10		%lin	Nom. line, full load
Input ripple rejection	30+	20 Log $\left(\frac{V_{IN}}{V_{OUT}}\right)$		dB	120Hz, nom. line
пристрые гејесион	20+	20 Log $\left(\frac{V_{IN}}{V_{OUT}}\right)$		dB	2400Hz, nom. line
No load power dissipation		1.35	2	Watts	Per module

OUTPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Setpoint accuracy		0.5	1	%V _{NOM}	
Load/line regulation		0.05	0.2	%V _{NOM}	LL to HL, 10% to FL
Load/line regulation		0.2	0.5	%V _{NOM}	LL to HL, NL to 10%
Output temperature drift		0.01	0.02	%/°C	Over rated temp.
Long term drift		0.02		%/1K hours	
Output ripple, pp					
≤ 10V		80	150	mV	20 MHz bandwidth
12V – 48V		0.75	1.5	%V _{NOM}	20 MHz bandwidth
Output voltage trimming [a]	50		110	%V _{NOM}	
Total remote sense compensation	0.5			Volts	0.25V max. neg. leg
OVP setpoint		N/A			
Current limit	105		125	%Ілом	Automatic restart

 $^{^{[}a]}$ 10V to 15V outputs, standard trim range $\pm 10\%$. Consult factory for wider trim range.

CONTROL PIN SPECIFICATIONS

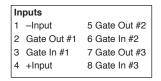
Parameter	Min	Тур	Max	Units	Notes
Gate out impedance		50		Ω	
Gate in impedance		10 ³		Ω	
Gate in high threshold		6.0		Volts	Use open collector
Gate in low threshold	0.65			Volts	
Gate in low current			6.0	mA	

MI-MegaMod Specifications (Cont.)

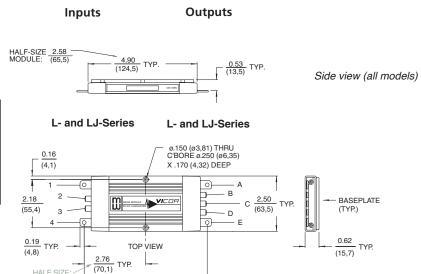
DIELECTRIC WITHSTAND CHARACTERISTICS

Parameter	Min	Тур	Max	Unit	Notes
Isolation (input to output)	3,000			V_{RMS}	Baseplate earthed
Isolation (output to baseplate)	500			V _{RMS}	
Isolation (input to baseplate)	1,500			V _{RMS}	

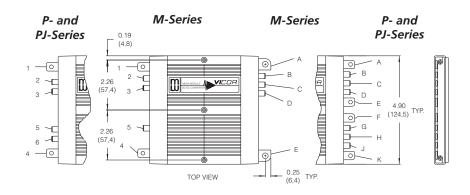
THERMAL CHARACTERISTICS


Parameter	Min	Тур	Max	Units	Notes
Efficiency		80 – 90%			
Baseplate to chassis		0.1		°C/Watt	

MECHANICAL SPECIFICATIONS

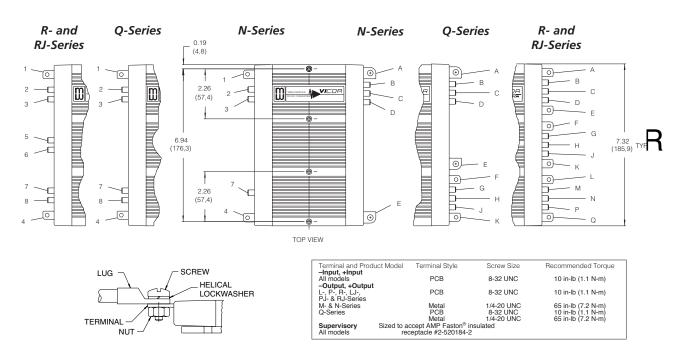

Parameter	Min	Тур	Max	Units	Notes
Weight					
1 Up		4.5 (127)		Ounces (Grams)	
2 Up		8.8 (250)		Ounces (Grams)	
3 Up		13.3 (377)		Ounces (Grams)	

MI-MegaMod Mechanical Specifications



HALF SIZE: (81,3)

Mounting Information


Use #6 machine hardware torqued to 5-7 in-lbs.

5.52

(140,2)

1.60

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Vicor's Standard Terms and Conditions

All sales are subject to Vicor's Standard Terms and Conditions of Sale, which are available on Vicor's webpage or upon request.

Product Warranty

In Vicor's standard terms and conditions of sale, Vicor warrants that its products are free from non-conformity to its Standard Specifications (the "Express Limited Warranty"). This warranty is extended only to the original Buyer for the period expiring two (2) years after the date of shipment and is not transferable.

UNLESS OTHERWISE EXPRESSLY STATED IN A WRITTEN SALES AGREEMENT SIGNED BY A DULY AUTHORIZED VICOR SIGNATORY, VICOR DISCLAIMS ALL REPRESENTATIONS, LIABILITIES, AND WARRANTIES OF ANY KIND (WHETHER ARISING BY IMPLICATION OR BY OPERATION OF LAW) WITH RESPECT TO THE PRODUCTS, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR REPRESENTATIONS AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT, OR ANY OTHER MATTER.

This warranty does not extend to products subjected to misuse, accident, or improper application, maintenance, or storage. Vicor shall not be liable for collateral or consequential damage. Vicor disclaims any and all liability arising out of the application or use of any product or circuit and assumes no liability for applications assistance or buyer product design. Buyers are responsible for their products and applications using Vicor products and components. Prior to using or distributing any products that include Vicor components, buyers should provide adequate design, testing and operating safeguards.

Vicor will repair or replace defective products in accordance with its own best judgment. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

Vicor Corporation

25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

