Ferroelectric ceramic capacitors: There is more than meets the eye

Presented at:

Tel Aviv 13 November 2019

High-Performance Power Conversion Seminar & Workshops

Resources

This lecture is recorded and be available at the YouTube channel: https://www.youtube.com/user/sambenyaakov/videos

LinkedIn Group " Where analog and power electronics meet knowledge " https://www.linkedin.com/groups/13606756

Papers and university lectures http://www.ee.bgu.ac.il/~pel/

sby@bgu.ac.il

Thanks to Mr. Evgeny Rozanov assisting in the preparation of this presentation

Background

Ceramic capacitors are one of the most popular electronic devices. They are used for filtering, decoupling and bypass. And yet, not all the features of these devices are understood or even known.

Objective

To present unfamiliar characteristics of ceramic capacitors (especially ferroelectric type) relevant to power electronics.

 For ceramic capacitor types and classification see https://en.wikipedia.org/wiki/Ceramic_capacitor

Outline

- 1. General specifications of commercial ceramic capacitors
- 2. ESR as a function of bias voltage
- 3. Piezoelectricity
- 4. Nonlinear capacitor modeling

General specifications of commercial ceramic capacitors

Structure of ceramic capacitors

Wikipedia

Basic structure of ceramic capacitors

Construction of a multilayer ceramic chip capacitor (MLCC), 1 = Metallic electrodes, 2 = Dielectric ceramic, 3 = Connecting terminals Construction of a ceramic disc capacitor

Commercial Ceramic capacitors

- Practical ceramic capacitors are build around paraelectric (Class I) and ferroelectric (Class II,III) dielectric materials
- Predominant Class I material is C0G (NPO) low dielectric constant
- Class II, III includes different dielectric materials e.g. X7R, Y5V

 High dielectric constant, Class III the highest, small capacitors
- Single, or multilayer (MLCC)

Ferroelectric – dependence on electric field Similar to ferromagnetic – dependence on magnetic field Has nothing to do with ferro (iron)!

Different definitions of application classes for ceramic capacitors

Definition regarding to IEC/EN 60384-1 and IEC/EN 60384-8/9/21/22	Definition regarding to EIA RS-198		
Class 1 ceramic capacitors offer high stability and low losses for resonant circuit applications.	Class I (or written class 1) ceramic capacitors offer high stability and low losses for resonant circuit application		
Class 2 ceramic capacitors offer high volumetric efficiency for smoothing, by-pass, coupling and decoupling applications	Class II (or written class 2) ceramic capacitors offer high volumetric efficiency with change of capacitance lower than −15% to +15% and a temperature range greater than −55 °C to +125 °C, for smoothing, by-pass, coupling and decoupling applications		
Class 3 ceramic capacitors are barrier layer capacitors which are not standardized anymore	Class III (or written class 3) ceramic capacitors offer higher volumetric efficiency than EIA class II and typical change of capacitance by −22% to +56% over a lower temperature range of 10 °C to 55 °C. They can be substituted with EIA class 2- Y5U/Y5V or Z5U/Z5V capacitors		
-	Class IV (or written class 4) ceramic capacitors are barrier layer capacitors which are not standardized anymore		

Paraelectric - COG (NPO) Small ε_r , smaller ESR

Ferroelectric Large ε_r , larger ESR

Feroelectricity - Electric polarization

Let a volume dV be isolated inside the dielectric. Due to polarization the positive bound charge dq_b^+ will be displaced a distance **d** relative to the negative bound charge dq_b^- , giving rise to a dipole moment $d\mathbf{p} = dq_b \mathbf{d}$. Substitution of this expression in (1) yields

$$\mathbf{P} = rac{\mathrm{d}q_b}{\mathrm{d}V}\mathbf{d}$$

Since the charge dq_b bounded in the volume dV is equal to $\rho_b dV$ the equation for **P** becomes:^[3]

 $\mathbf{P} = \rho_b \mathbf{d} \qquad (2)$

where ρ_b is the density of the bound charge in the volume under consideration.

Polarization: a measure of electric dipole moment, ability to bound charge

In a homogeneous, linear and isotropic dielectric medium, the **polarization** is aligned with and proportional to the electric field **E**:^[7]

$$\mathbf{P}=\chiarepsilon_0\mathbf{E},$$

where ε_0 is the electric constant, and χ is the electric susceptibility of the medium. Note that in this case χ simplifies to a scalar, although more generally it is a tensor. This is a particular case due to the *isotropy* of the dielectric.

In electricity (electromagnetism), the **electric susceptibility** (χ_e ; Latin: *susceptibilis* "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in response to the field, and thereby reduce the total electric field inside the material (and store energy). It is in this way that the electric susceptibility influences the electric permittivity of the material and thus influences many other phenomena in that medium, from the capacitance of capacitors to the speed of light.^{[1][2]}

Constant dielectric

Ferroelectric Ferroelectric polarization

 \mathcal{E}_{γ} of ferroelectric material is very large up to 7000 Small capacitors

Ferroelectric hysteresis and capacitance

Figure 11. Hysteresis curve for a 10µF ferroelectric dielectric as a function of AC test signal voltage.

www.venkel.com

Capacitance - DC Voltage Characteristics

Commercial paraelectric ceramic capacitors (C0G) are limited to about 0.1µF

Temperature dependence

Standard	Characteristics	Basic temperature	Temperature range	Capacitance tolerance	20	
JIS	B	20°C	-25~+85°C	±15%	20 [
	X5R	X5R Z5°C X5S 25°C X6S X6T		±15%		
EIA	X5S		-55 ~ +85°C	±22%		
	X5T			+22%, -33%	- (INPO) - (INPO)	
	X6S			±22%		
	X6T		-55~+105°C	+22%, -33%		
JIS	R	20°C	-55~+125°C	±15%	ਦੁੱ -30	
	X7R			±15%	<u></u> ଅ -40 -	
	X7S			±22%		
EIA	X7T	25°C	-55~+125°C	+22%, -33%		
	X7U			+22%, -56%	ပိ -60	
	X8R		-55~+150°C	±15%	-70	
JIS	F	20°C	-25~+85°C	+30%, -80%	-80	
EIA	Y5V	25°C	-30~+85°C	+22%, -82%		
	Z5U		10	+22%, -56%	-90 -	5
	Z5V		+10~+85°C	+22%, -82%	-/	5
EIA - Electronic Industries Alliance JIS - Japanese Industrial Standards						
www.rohi © 2013 F	m.com ROHM Co., Ltd. All rig	ghts reserved.	2 of 4	A	pr. 2013 - Rev.1.0	
The Im	portant Points o	of Multi-layer Ceramic 0	Capacitor Used in Bucl	k Converter circuit	Application Note	

Figure 2. Major Temperature Characteristics of High-dielectric constant type MLCC

14

Typical ceramic capacitor data sheet parameters

ESR ESL C $f_0 = \frac{1}{2\pi\sqrt{LC}}$ $\omega_0 = \frac{1}{\sqrt{LC}}$

At resonance:

 $f < f_0 : Z = \frac{1}{\omega C}$ $f > f_0 : Z = \omega ESL$

Capacitance definition (?)

С

4

(No endorsement/affiliation implied)

The effect of size on C=f(V_{bias})

maxim integrated_™

Maxim > Design Support > Technical Documents > Tutorials > General Engineering Topics > APP 5527

Keywords: cap, capacitor, capacitance, bypass, component variation, RC, X7R, X5R, ceramic, Y5V, passive

TUTORIAL 5527

Temperature and Voltage Variation of Ceramic Capacitors, or Why Your 4.7µF Capacitor Becomes a 0.33µF Capacitor

The effect of size

voltage behavior of several 16V, 1.0µF X7R caps versus their 4.7µF, 16V, X7R cousins.

The effect of size and WDCV

ESR as a function of bias voltage

25

Significant question because ceramic capacitors losses are:

Proc. of the 2014 International Symposium on Electromagnetic Compatibility (EMC Europe 2014), Gothenburg, Sweden, September 1–4, 2014

Wideband Impedance Characterization and Modeling of Power Electronic Capacitors under High Bias Voltage Variation

Fahim Hami^{1,2}, Habib Boulzazen², Fabrice Duval² and Moncef Kadi² ¹Smart Low-Carbon Vehicle and Mobility, VeDeCoM, 77 rue des Chantiers, Versailles, France. ²Embedded Electronic Systems Research Institute, IRSEEM-ESIGELEC, Saint Etienne du Rouvray, France. fahim.hami@esigelec.fr

Figure 7. High frequency electric model of Z5U ceramic capacitor under applied DC bias voltage V_{rated} (a) and without the applied DC bias voltage (b).

Z5U

Measurements by Mr. Hermann Haag of Omicron LAB, and Vorarlberg University of Applied Sciences, Austria using Omicron's Bode 100 Network Analyzer

C1812W334KCRACTU (same as K-SIM data)

2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO)

Specifics of the X7R Capacitors Application in the High Frequency Inverters

Alexey Tyshko NATA Consulting LLC & PetroMar Technology Coatesville/Exton, PA, USA Vilnius Gediminas Technical University Vilnius, Lithuania atyshko01@comcast.net

Saulius Balevicius Center of Physical Sciences and Technology and Vilnius Gediminas Technical University Vilnius, Lithuania sbal@pfi.lt

Fig. 4. Capacitor test setup

80V bias increases ripple current loss by more then 10 fold!

???

KEMET Part Number: C1812W334KCRACTU (C1812W334KCRAC7800)

Ceramic, Anti-Arcing, ArcShieldFlexTerm-(CxxxxW), 0.33 uF, 10%, 500 V, 1812, X7R, SMD, MLCC, Arcshield, High Voltage

Dimensions			
L	4.5mm +/-0.4mm		
W	3.2mm +/-0.3mm		
т	2.1mm +/-0.20mm		
В	0.7mm +/-0.35mm		

Packaging Specifications			
Packaging:	T&R, 180mm, Plastic Tape		
Packaging Quantity:	500		

General Information			
Style:	SMD Chip		
Series:	ArcShieldFlexTerm-(CxxxxW)		
Chip Size:	1812		
Description:	SMD, MLCC, Arcshield, High Voltage		
Features:	High Voltage		
RoHS:	Yes		
Termination:	Flexible Termination		
Marking:	No		
Failure Rate:	N/A		
Miscellaneous:	Note: Referee time for X7R dielectric for this part number is 1000 hours. X7R dielectric is not recommended for AC line filtering or pulse applications		

Specifications			
0.33 uF			
10%			
500 VDC			
750 V			
-55/+125C			
X7R			
2.5%			
3% Loss/Decade Hour			
303 MOhms			

X7R 0.33uF 500V 1812

Same as the one tested by Bode 100

35

According to K-SIM ESR is decreasing with bias (not consistent with papers and Bode100 results)

?

Submitted to PCIM- 2020

Voltage bias effect on the ESR of ferroelectric ceramic capacitors

Hermann Haag¹, Florian Hämmerle¹, and Shmuel (Sam) Ben-Yaakov²

¹ Omicron Lab, Austria
 ² Ben-Gurion University, Israel

Table I. A summary of measured ESR and comparison to K-SIM simulation

Material	Capacitance	Voltage	ESR change	ESR K-SIM
X5R	3.3µF	25V	+25.1%	-68.0%
X5R	10µF	25V	+30.5%	
X5R	47µF	16V	+1.2%	
X7R	330nF	50V	+20.4%	-20.0%
X7R	2.2µF	50V	+64.8%	
X7R	15nF	50V	+13.7%	
X7R	15nF	1000V	+76.3%	
X7R	68nF	1000V	+71.1%	

Piezoelectricity

- 1. Ferroelectric dielectric is piezoelectric
- 2. Reciprocal relation between electrical field and mechanical stress
- 3. When electrically driven by AC ceramic capacitors emit acoustic waves
- 4. Multiple resonant frequencies
- 5. Can cinduce" singing capacitors" phenomenon
- 5. Can be used to detect defects

Capacitors for Reduced Microphonics and Sound Emission

Mark Laps, Roy Grace, Bill Sloka, John Prymak, Xilin Xu, Pascal Pinceloup, Abhijit Gurav, Michael Randall, Philip Lessner, Aziz Tajuddin

KEMET Electronics Corporation, 201 Fairview Street Extension, Fountain Inn, SC 29644 Phone: 864-409-5629, FAX: 864-409-5642 e-mail: marklaps@kemet.com

Figure 7. Capacitor distortion transferred to the PCB acting as an amplifier.

Cs(F)

1.4000m

1.2000m

1.0000m

800.00u

600.00u

400.000

200.00u

0.0000

Figure 6 Frequency scan of the capacitance and ESR.

Measurements by Mr. Hermann Haag of Omicron LAB, and Vorarlberg University of Applied Sciences, using Omicron's Bode 100 Network Analyzer

46

Experiment Setup for Film Capacitor

Measurements by Mr. Stanislav Tishechkin, Department of ECE, Ben-Gurion University, using Omicron's Bode 100 Network Analyzer

Results for Film Capacitor

--Trace 1 --Trace 2 -DC_0 -DC_50 -DC_150-DC_200-DC_250-DC_300-DC_350

Experiment Setup and results for X7R Capacitor

Submitted to PCIM - 2020

Losses in Ferroelectric Dielectric Ceramic Capacitors due to Electromechanical Resonances

Hermann Haag¹, André Mitterbacher², Florian Hämmerle¹

¹ OMICRON electronics GmbH, Austria
 ² University of Applied Sciences Vorarlberg, Austria

Fig. 3: Schematic of the loss measurement

Fig. 4: Calorimetric loss measurement

ESR and piezoelectricity of ceramic capacitors: more research is required

Nonlinear capacitors modeling

Capacitance definition

С

4

Which model is correct?

 $i = C(v) \frac{dv}{dt}$

 $i = \frac{d\{C(v) \cdot v\}}{dt}$

 $i = C(v)\frac{dv}{dt} + v\frac{d(C(v))}{dt}$

Redefining 'capacitance'

V

61

Conclusion: Both models are correct

Provided that the 'capacitances' are defined properly

 $i = C_t(v)\frac{dv}{dt} + v\frac{d(C_t(v))}{dt}$

 $i = C_d(v) \frac{dv}{dt}$

 $C_t(v) = \frac{\int_0^v C_d(v) dv}{v}$

So why the peak?

Thank you for your attention!